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1 Introduction

Reservoir simulation involves to compute dynamic flow of different phases in
a porous medium. The initial state of the reservoir is usually precomputed via
geo-statistics methods, extrapolating measures of the terrain. so, the input
of reservoir simulation is given as a fine mesh containing heterogeneous data.
However, due to the complexity of the system of partial differential equations
(PDE) governing the flow dynamic, the use of this fine mesh is impractica-
ble. Nowadays, industrial software uses upscaled model [1] a coarse mesh is
generated homogenizing fine properties from the fine mesh.

In this paper, we will describe an agglomeration strategy, to dynamically
coarsen the fine mesh without loss of the fine properties. The adaptivity
may be driven by physics and/or geometric estimators. Ideally, the coars-
ening should be applied locally in low gradient regions, whereas high gradient
regions keep the fine mesh.

After recalling connectivity of hexahedral meshes, we detail the spatial
twist components,[3],[5],[4]. These components form an arrangement of mesh
connectivity. They also form meshes of sub dimension, denoted paths and
leaves. Moreover set of leaves and paths are linked each other forming a graph
object. The coarsening algorithm we use begin by a coloring of the mesh to
extract its leave and path structure of the mesh. This structure gives coarse
hexahedral decompositions of the mesh that easily identify leaves agglomera-
tion that preserve the conformity of the hexahedral mesh. We illustrate the use
of this algorithm on a simulation platform, [2], on a several meshes including
an example of mesh used for reservoir simulations.
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2 Extracting hexahedral structure

2.1 Cubes and connectivity

Hexahedron belongs to the more extended class of polytopes, the k-cubes
with k denotes the dimension. The sequence of k-cubes is built from a single
node, by a recursive transformation named extrusion. It follows an interesting
property : all polytopes of co-dimension l, induced in a n-cube is a (k-l)-cube;

Another property of n-cubes concerns symmetry. The boundary graph,
formed by the sets of (k-1)-cubes and (k-2)-cubes is a complete-n-partite
graph, with each independent set having exactly two (k-1)-cubes. Then we
denote ∼

k−1
, the symmetry through a k-cube. Thus for each independent set

of (k-1)-cubes, {x, y}, it follows x ∼
k−1

y.

Now we consider M as an hexahedral mesh, with B3, B2, B1 and B0,
form sets of hexahedrons, quads, edges and nodes. Local binary relations over
hexaedrons, ∼

2
, over faces, ∼

1
, and over edges ∼

0
can be gathered into sets.

Considering these binary relation as symmetric, reflexive and transitive, then
each defines equivalence classes partitioning the sets of faces, edges or nodes.

Relations ∼
1

and ∼
2

are used to define components of the specific compo-

nents of a hexaedral mesh, as detailed in [3]. [x]1 = {y ∈ B1|x∼
1
y} is the class

of edges whose x belongs; and [x]2 = {y ∈ B2|x∼
2
y} is the class of faces whose

x belongs.

2.2 Paths an leaves

Equivalence relations are used to decompose dual graph into paths of the
mesh. Since the mesh has a conformal connectivity, each internal quads has
exactly two neighboring hexahedrons and defines an edge of the dual graph.
In contrast boundary quads has only one neighboring hexahedrons. It follows
that [x]2 forms a finite or sequence of internal faces linked by relation ∼

2
in a

hexahedron.
As result the sequence of internal faces define a path included in the dual

graph of the mesh. If no there is no boundary faces in the sequence, the path is
closed. Otherwise, two boundary faces belongs to [x]2 and the path is opened.
Paths may be self intersected, but do not occur in our study case.

The classes [x]2 are parsed by component, in the meantime paths are
defined as list of hexahedrons. In case of opened paths, boundary faces are
stored as extra information. When components have been parsed, a set of
paths, P, decomposes the dual graph of the mesh and such any hexahedron
belongs to three paths.

Same way, the dual graph of the boundary mesh into boundary paths. But
∼
1

is used only for boundary elements. As result [x]1 forms a finite sequence of
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boundary faces linked by relation ∼
1

in boundary quads. Each boundary path
is closed and defineed as a circular list of boundary faces. The set of boundary
path decomposes the dual graph of the boundary mesh such any boundary
faces belongs to two boundary paths.

Leaves are subgraph form with faces incident to class of internal edges. It
involves that each path belong to two leaves and each hexaedron belongs to
three leaves. So subgraph is defined as a union of paths such intersection of
leaves is a path.

To make the union, open paths are linked to their extra boundary via the
boundary faces. Then the open paths are gathered in a leave bounded by a
single boundary path. However if it appears that two independent boundary
paths are linked to a same open path, they are match to form a leaves bounded
by two boundary paths. When all open path belongs to two leaves. We may
add closed path. Finally, if it lefts closed paths connected to a single leave,
closed leaved are formed.

2.3 Coloring

Leaves and paths are defined such that for all paths p in P, it exists exactly
two leaves, l1 and l2 in L and l1 ∩ l2 = p. Basically two intersecting leaves
cannot be agglomerated. Partitioning the set of leaves is useful to identify
a maximum of leaves that can be agglomerated. So we define the graph of
intersection of leaves, G, whose vertices are leaves and of edges are defined
by their intersections. Then, L is partitioned into subsets of non-intersecting
leaves, by graph coloring.

Optimal graph coloring is a NP-complete problem as soon as χ(G) >
2. Nevertheless there are heuristic algorithms, as the greedy coloring, that
color a graph in polynomial time. Greedy coloring, is an iterative procedure
considering vertices in specific order and and mapping it to the smallest color
not used by its neighbours.

We test classic ordering, BFS and decreasing degrees. As we know that
χ(G) ≥ 3, if greedy coloring involves only 3 colors, such coloring is optimal.
An immediate consequence is that it determines that the mesh is globally
structured. However, even for structured meshes the greedy algorithm may be
non-optimal. It appears in general when domain has concave shape. Never-
theless the supplementary colors appears only with singularities on boundary
mesh.

3 Coarsening

3.1 Conformal agglomerations

Our coarsening algorithm is based on atomic agglomerations such two neigh-
boring hexaedrons form a coarser hexaedron by removing their common faces.
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self-intersect closed p. 2-boundary l. closed l. colors fine mesh coarsened

no no yes no 3 7874 322
no yes yes no 5 55789 78
no yes yes yes 6 35869 270

Fig. 1. Coarsest hexahedral decomposition, perfomed by successive conformal leave
agglomeration. Table presents few properties of paths, leaves and coloring. and num-
ber of hexaedrons.

The opposite quads to the one removed are preserved whereas others are
agglomerate by two, forming coarser quads. And new coarse edges are also
formed with two fine edge.

However to preserve a conformal hexahedral mesh, atomic agglomeration
must be applied on two matching leaves. This means that each hexahedron
has a unique neighbour in the other leave. It involves that two matching
leaves intersect the same leaves. For this reason they must have been colored
identically.
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3.2 Dynamic agglomeration

Algorithms iterate on the the color to search agglomeration in all directions.
To identify matching leaves of a given color, algorithm enumerate faces of the
mesh. Faces shared by hexadrons of distinct leaves but same color are count.
In the meantime algorithm can evaluate local coarsening criteria. The all the
conformal agglomeration are identified and local criteria is reduced by leaves.
The chosen leave agglomerations involves a set of atomic agglomeration. Mesh
is modified, but coarse element update links with the fine element.

Fig. 2. Porosity defined on a coarse mesh and standard deviation between porosity
defined with fine cell porosity (number of cells : ≈ 106,≈ 105 and 104)

4 Conclusion and perspectives

In petroleum engineering reservoir simulations use upscaled models where a
coarse mesh is generated from a very fine one gathering all the petro-physical
parameters of the terrain. In this note, we have described a coarsening algo-
rithm for hexaedral meshes that allows by a quick reference to this parent
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fine mesh to recover easily these informations. This algorithm is based on the
notions of paths and leaves. After having generated leaves decomposing the
mesh, a coloring algorithm is used to identify non-intersecting leaves. Then
agglomeration of leaves can be performed. This algorithm have been applied
to several examples of meshes including meshes used for reservoir simulations.
We plan to extend our work into two complementary directions. The first one
will be to study the control of the agglomeration of leaves and hexahedron
by the use of local error estimates coming from the solution of the governing
PDE. Another work direction will be to extend the algorithm to hex-dominant
meshes (CPG meshes) that contains degenerated hexaedron by allowing the
algorithm to generate semi-conforming meshes.
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